Categories
Planning

Framework for Measuring Pedestrian Accessibility

I’m a co-author of a new article, “A Generalized Framework for Measuring Pedestrian Accessibility around the World Using Open Data,” which has just been published by Geographical Analysis. We developed an open source, containerized software framework for modeling pedestrian networks using open data to analyze disaggregate access to daily living needs. We worked with local partners in 25 cities around the world to demonstrate and validate this toolkit.

From the abstract:

Pedestrian accessibility is an important factor in urban transport and land use policy and critical for creating healthy, sustainable cities. Developing and evaluating indicators measuring inequalities in pedestrian accessibility can help planners and policymakers benchmark and monitor the progress of city planning interventions. However, measuring and assessing indicators of urban design and transport features at high resolution worldwide to enable city comparisons is challenging due to limited availability of official, high quality, and comparable spatial data, as well as spatial analysis tools offering customizable frameworks for indicator construction and analysis. To address these challenges, this study develops an open source software framework to construct pedestrian accessibility indicators for cities using open and consistent data. It presents a generalized method to consistently measure pedestrian accessibility at high resolution and spatially aggregated scale, to allow for both within- and between-city analyses. The open source and open data methods developed in this study can be extended to other cities worldwide to support local planning and policymaking. The software is made publicly available for reuse in an open repository.

For more, check out the article.

Categories
Data

Worldwide Street Network Models and Indicators

My article, “Street Network Models and Indicators for Every Urban Area in the World” has been published by Geographical Analysis. This project was a massive undertaking and I’m excited to share it. As you might guess from the title, I modeled and analyzed the street network of each urban area in the world then deposited all the source code and models and indicators in open repositories for public reuse. The article also includes a high-level analysis of urban street network form across the world.

Cities worldwide exhibit a variety of street patterns and configurations that shape human mobility, equity, health, and livelihoods. Using boundaries derived from the Global Human Settlement Layer, I modeled and analyzed the street networks of every urban area in the world using OSMnx and OpenStreetMap raw data. In total, I modeled over 160 million street network nodes and over 320 million edges across 8,914 urban areas in 178 countries. I attached node elevations and street grades to every node/edge in the final models. All the final models were topologically simplified such that nodes represent intersections and dead-ends, and edges represent the street segments linking them.

Street network topology simplification with OSMnx and OpenStreetMap

Categories
Data

GIS and Computational Notebooks

I have a new chapter “GIS and Computational Notebooks,” co-authored with Dani Arribas-Bel, out now in The Geographic Information Science & Technology Body of Knowledge. Want to make your spatial analyses more reproducible, portable, and well-documented? Our chapter is a short, gentle intro to using code and notebooks for modern GIS work.

Science and analytics both struggle with reproducibility, documentation, and portability. But GIS in both research and practice particularly suffers from these problems due to some of its unique characteristics. Our chapter discusses this challenge and its urgency for building better and more actionable knowledge from geospatial data. Then we introduce an emerging solution, the computational notebook, using Jupyter as our central example to illustrate what it does and how it works.

Jupyter notebook JupyterLab user interface

Categories
Academia

Geospatial Tool Building

My new article “The Right Tools for the Job: The Case for Spatial Science Tool-Building” has been published in Transactions in GIS (free PDF). I originally presented this paper as the 8th annual Transactions in GIS plenary address at the AAG annual meeting last year. I argue that tool-building is an essential but poorly incentivized component of academic geography and social science more broadly. To conduct better science, we need to build better tools. Better tools and data models, spearheaded by academics, can help infuse theory into our field’s quantitative work where it is too often lacking. But if we want better tools, we have to build them. It is not ESRI’s job to satisfy all the theoretical needs of the spatial sciences.

Categories
Data

OSMnx Summer Wrap-Up

OSMnx underwent a major overhaul this summer, with the development of several new features, improvements, and optimizations. This project concluded yesterday with the release of v0.16.0.

This post briefly summarizes what’s changed since the previous mid-summer updates. It covers the new k shortest paths solver, auto-selecting the first polygon when geocoding, better conversion of graph types, and the new geometries module that lets you flexibly download any OSM geospatial objects as a geopandas GeoDataFrame.

Categories
Urban

Big Data in Urban Morphology

My new article “Spatial Information and the Legibility of Urban Form: Big Data in Urban Morphology” has been published in the International Journal of Information Management (download free PDF). It builds on recent work by Crooks et al, presenting workflows to integrate data-driven and narrative approaches to urban morphology in today’s era of ubiquitous urban big data. It situates this theoretically in the visual culture of planning to present a visualization-mediated interpretative process of data-driven urban morphology, focusing on transportation infrastructure via OSMnx.

OSMnx: Figure-ground diagrams of one square mile of each street network, from OpenStreetMap, made in Python with matplotlib, geopandas, and NetworkX

Categories
Data

Defining Urban Data Science

I’m a co-author on a new article out in Environment and Planning B: Urban Analytics and City Science titled “A Roundtable Discussion: Defining Urban Data Science” (download free PDF). It arises from a panel discussion I participated in at the 2019 AAG Annual Meeting in DC. Vanessa Frias-Martinez, Song Gao, Ate Poorthuis, and Wenfei Xu joined me on the panel, which was organized and moderated by Wei Kang, Taylor Oshan, and Levi Wolf. From the abstract:

Categories
Academia

AAG Transactions in GIS Plenary

Manhattan, New York City, New York street network, bearing, orientation from OpenStreetMap mapped with OSMnx and PythonI am giving the Transactions in GIS plenary address at the AAG conference this afternoon. I’ll be reflecting on urban science, spatial networks, and tool-building in academia, focusing on OSMnx. A paper will be forthcoming soon, but in the meantime, for any interested plenary session attendees or other folks, here are a few links to more info and related resources:

Getting started

What is OSMnx? What does it do? Here’s a succinct overview.

The easiest way to get started with street network modeling and analysis in OSMnx is with this docker image and these example/tutorial Jupyter notebooks. The OSMnx software documentation is available here and this journal article introduces it more formally.