Visualize Foursquare Location History

I started using Foursquare at the end of 2012 and kept with it even after it became the pointless muck that is Swarm. Since I’ve now got 4 years of location history (ie, check-ins) data, I decided to visualize and map it with Python, matplotlib, and basemap. The code is available in this GitHub repo. It’s easy to re-purpose to visualize your own check-in history: you just need to plug in your Foursquare OAuth token then run the notebook.

First the notebook downloads all my check-ins from the Foursquare API. Then I mapped all of them, using matplotlib basemap.

Map of Foursquare Swarm check-in location history Continue reading Visualize Foursquare Location History

America’s College Football Stadiums

stadiums-fbs-conf-barAlso check out this follow-up analysis of stadium attendance.

The 2016 college football championship game between Clemson and Alabama was held at University of Phoenix Stadium, where the NFL’s Arizona Cardinals play. Interestingly, this NFL (ironic, given its name) stadium is considerably smaller than the home stadiums of either Clemson or Alabama. In fact every NFL stadium is considerably smaller than the largest college stadiums. Outside of North Korea, the 8 largest stadiums in the world are college football stadiums, and the 15 largest college football stadiums are larger than any NFL stadium.

Americans are obsessed with college football, but how much is too much? Today most athletic departments are subsidized by their schools. Public universities increased their annual football spending by $1.8 billion between 2009-2013 while racking up huge debts to finance stadiums with little chance of profit. This interactive map shows each NCAA Division I college football team’s home stadium: collectively they seat 8.5 million people. Click any point for details about stadium capacity and year built:

Continue reading America’s College Football Stadiums

World Population Projections

The U.N. world population prospects data set depicts the U.N.’s projections for every country’s population, decade by decade through 2100. The 2015 revision was recently released, and I analyzed, visualized, and mapped the data (methodology and code described below).

The world population is expected to grow from about 7.3 billion people today to 11.2 billion in 2100. While the populations of Eastern Europe, Taiwan, and Japan are projected to decline significantly over the 21st century, the U.N. projects Africa’s population to grow by an incredible 3.2 billion people. This map depicts each country’s projected percentage change in population from 2015 to 2100:

UN world population projections data map: Africa, Asia, Australia, Europe, North America, South America

Continue reading World Population Projections

The Landscape of U.S. Rents

Which U.S. cities are the most expensive for rental housing? Where are rents rising the fastest? The American Community Survey (ACS) recently released its latest batch of 1-year data and I analyzed, mapped, and visualized it. My methodology is below, and my code and data are in this GitHub repo.

This interactive map shows median rents across the U.S. for every metro/micropolitan area. Click any one for details on population, rent, and change over time. Click “switch” to re-draw the map to visualize how median rents have risen since 2010:

Continue reading The Landscape of U.S. Rents

Exporting Python Data to GeoJSON

I like to do my data wrangling and analysis work in Python, using the pandas library. I also use Python for much of my data visualization and simple mapping. But for interactive web maps, I usually use Leaflet. There isn’t dead-simple way to dump a pandas DataFrame with geographic data to something you can load with Leaflet. You could use GeoPandas to convert your DataFrame then dump it to GeoJSON, but that isn’t a very lightweight solution.

So, I wrote a simple reusable function to export any pandas DataFrame to GeoJSON:

Continue reading Exporting Python Data to GeoJSON

Urban Informatics and Visualization at UC Berkeley

The fall semester begins next week at UC Berkeley. For the third year in a row, Paul Waddell and I will be teaching CP255: Urban Informatics and Visualization.

This masters-level course trains students to analyze urban data, develop indicators, conduct spatial analyses, create data visualizations, and build Paris open datainteractive web maps. To do this, we use the Python programming language, open source analysis and visualization tools, and public data.

This course is designed to provide future city planners with a toolkit of technical skills for quantitative problem solving. We don’t require any prior programming experience – we teach this from the ground up – but we do expect prior knowledge of basic statistics and GIS.

Our teaching materials, including IPython Notebooks, tutorials, and guides are available in this GitHub repo, updated as the semester progresses.

Continue reading Urban Informatics and Visualization at UC Berkeley

Map Projections That Lie

How big is Greenland? It’s huge, right? At 836,109 square miles in size, Greenland is the largest island and the 12th largest country on Earth. With only 56,000 people living in that enormous area (80% of which is covered by the world’s only extant ice sheet outside of Antarctica), it is also the least densely populated country on Earth.

You can get a sense of how large Greenland is when you look at a map of the world:

world map mercator projection

It’s huge! Greenland is bigger than the entire continent of Africa! Or is it? The map above uses the common Mercator projection to project the 3-D surface of the Earth onto a 2-D surface suitable for a paper map or an image on your computer screen. But it’s not easy to project the curved surface of a sphere onto a rectangular plane. Compromises must be made. In the case of the Mercator projection, the compromise is that objects’ sizes become increasingly distorted the further they are from the equator. At the poles, the scale and distortion become infinite.

Continue reading Map Projections That Lie

Visualizing Craigslist Rental Listings

Our paper on collecting and analyzing U.S. housing rental markets through Craigslist rental listings has been accepted for publication by the Journal of Planning Education and Research. Check out the article here. This map of rental listings in the contiguous U.S. is divided into quintiles by rent per square foot:

Map of 1.5 million Craigslist rental listings in the contiguous U.S., divided into quintiles by each listing's rent per square foot
Map of 1.5 million Craigslist rental listings in the contiguous US, summer 2014

Visualizing Summer Travels Part 6: Projecting Spatial Data with Python

This post is part of a series on visualizing data from my summer travels.

I’ve previously discussed visualizing the GPS location data from my summer travels with CartoDB, Leaflet, and Mapbox + Tilemill. I also visualized different aspects of this data set in Python, using the matplotlib plotting library. However, these spatial scatter plots used unprojected lat-long data which looked pretty distorted at European latitudes.

Today I will show how to convert this data into a projected coordinate reference system and plot it again using matplotlib. These projected maps will provide a much more accurate spatial representation of my spatial data and the geographic region. All of my code is available in this GitHub repo, particularly this notebook.

Continue reading Visualizing Summer Travels Part 6: Projecting Spatial Data with Python

Using geopandas on Windows

projected-shapefile-gps-coordinatesThis guide was updated in June 2016 to reflect changes to the dependencies and the ability to install with Python wheels.

I recently went through the exercise of installing geopandas on Windows and getting it to run. Having learned several valuable lessons, I thought I’d share them with the world in case anyone else is trying to get this toolkit working in a Windows environment (also see this GitHub gist I put together).

It seems that pip installing geopandas works fine on Linux and Mac. However, several of its dependencies have C extensions that cause compilation failures with pip on Windows. This guide gets around that issue. For preliminaries, I have this working on Windows 7, 8, and 10. My Python environments are Anaconda, 64-bit, with both Python 2.7 and 3.5. I’m running geopandas version 0.2 with GDAL 2.0.2, Fiona 1.7.0, pyproj 1.9.5.1, and shapely 1.5.16.

Continue reading Using geopandas on Windows