Categories
Planning

OSMnx: Python for Street Networks

OSMnx: New York City urban street network visualized and analyzed with Python and OpenStreetMap dataIf you use OSMnx in your work, please cite the journal article.

OSMnx is a Python package to retrieve, model, analyze, and visualize street networks from OpenStreetMap. Users can download and model walkable, drivable, or bikeable urban networks with a single line of Python code, and then easily analyze and visualize them. You can just as easily download and work with amenities/points of interest, building footprints, elevation data, street bearings/orientations, and network routing. If you use OSMnx in your work, please download/cite the paper here.

In a single line of code, OSMnx lets you download, model, and visualize the street network for, say, Modena Italy:

import osmnx as ox
ox.plot_graph(ox.graph_from_place('Modena, Italy'))

OSMnx: Modena Italy networkx street network in Python from OpenStreetMap

Categories
Planning

Urban Complexity and the March Toward Qualifying Exams

The Department of City and Regional Planning at UC Berkeley has a rather arduous process for advancing to candidacy in the PhD program. It essentially consists of 6 parts:

  1. Take all the required courses
  2. Produce an inside field statement – a sort of literature review and synthesis explaining the niche within urban planning in which you will be positioning your dissertation research
  3. Complete an outside field – sort of like what a minor was in college
  4. Take an inside field written exam
  5. Produce a defensible dissertation prospectus
  6. Take an oral comprehensive exam covering your inside field, your outside field, general planning theory and history, and finally presenting your prospectus.

Whew. Lots to do this year. The good news is I am currently wrapping up my inside field statement and preparing to take the inside field exam. My topic is generally around complexity theory in urban planning. Here is the working abstract from my statement: