Categories
Data

OSMnx Summer Wrap-Up

OSMnx underwent a major overhaul this summer, with the development of several new features, improvements, and optimizations. This project concluded yesterday with the release of v0.16.0.

This post briefly summarizes what’s changed since the previous mid-summer updates. It covers the new k shortest paths solver, auto-selecting the first polygon when geocoding, better conversion of graph types, and the new geometries module that lets you flexibly download any OSM geospatial objects as a geopandas GeoDataFrame.

Categories
Data

Street Network Analysis in a Docker Container

Containerization is the way of the future present. I’ve heard feedback from some folks over the past few months who would like to play around with OSMnx for street network analysis, transport modeling, and urban design—but can’t because they can’t install Python and its data science stack on their computers. Furthermore, it would be nice to have a consistent reference environment to deploy on AWS or elsewhere in the cloud.

So, I’ve created a docker image containing OSMnx, Jupyter, and the rest of the Python geospatial data science stack, available on docker hub alongside additional usage instructions. If you’re starting from scratch, you can get started in four simple steps:

Categories
Data

OSMnx Features Round-Up

OSMnx is a Python package for quickly and easily downloading, modeling, analyzing, and visualizing street networks and other spatial data from OpenStreetMap. Here’s a quick round-up of recent updates to OSMnx. I’ll try to keep this up to date as a single reference source. A lot of new features have appeared in the past few months, and people have been asking about what’s new and what’s possible. You can:

  • Download and model street networks or other networked infrastructure anywhere in the world with a single line of code
  • Download any other spatial geometries, place boundaries, building footprints, or points of interest as a GeoDataFrame
  • Download by city name, polygon, bounding box, or point/address + network distance
  • Download drivable, walkable, bikeable, or all street networks
  • Download node elevations and calculate edge grades (inclines)
  • Impute missing speeds and calculate graph edge travel times
  • Simplify and correct the network’s topology to clean-up nodes and consolidate intersections
  • Fast map-matching of points, routes, or trajectories to nearest graph edges or nodes
  • Save networks to disk as shapefiles, geopackages, and GraphML
  • Save/load street network to/from a local .osm xml file
  • Conduct topological and spatial analyses to automatically calculate dozens of indicators
  • Calculate and visualize street bearings and orientations
  • Calculate and visualize shortest-path routes that minimize distance, travel time, elevation, etc
  • Visualize street networks as a static map or interactive leaflet web map
  • Visualize travel distance and travel time with isoline and isochrone maps
  • Plot figure-ground diagrams of street networks and building footprints
Categories
Data

OSMnx and Street Network Elevation Data

Check out the journal article about OSMnx.

OSMnx can now download street network elevation data for anywhere in the world. In one line of code it downloads the elevation in meters of each network node, and in one more line of code it can calculate every street (i.e., edge) grade. Here is the complete street network of San Francisco, California, with nodes colored according to their elevation:

OSMnx street network elevation data for San Francisco, California to calculate street grade and steepness

Categories
Planning

Urban Form Analysis with OpenStreetMap Data

Figure-ground diagrams of urban form and building footprints in London, Paris, Venice, and Brasilia depict modernism's inversion of traditional spatial orderCheck out the journal article about OSMnx. This is a summary of some of my recent research on making OpenStreetMap data analysis easy for urban planners. It was also published on the ACSP blog.

OpenStreetMap – a collaborative worldwide mapping project inspired by Wikipedia – has emerged in recent years as a major player both for mapping and acquiring urban spatial data. Though coverage varies somewhat worldwide, its data are of high quality and compare favorably to CIA World Factbook estimates and US Census TIGER/Line data. OpenStreetMap imported the TIGER/Line roads in 2007 and since then its community has made numerous corrections and improvements. In fact, many of these additions go beyond TIGER/Line’s scope, including for example passageways between buildings, footpaths through parks, bike routes, and detailed feature attributes such as finer-grained street classifiers, speed limits, etc.

This presents a fantastic data source to help answer urban planning questions, but OpenStreetMap’s data has been somewhat difficult to work with due to its Byzantine query language and coarse-grained bulk extracts provided by third parties. As part of my dissertation, I developed a tool called OSMnx that allows researchers to download street networks and building footprints for any city name, address, or polygon in the world, then analyze and visualize them. OSMnx democratizes these data and methods to help technical and non-technical planners and researchers use OpenStreetMap data to study urban form, circulation networks, accessibility, and resilience.

Categories
Planning

Urban Form Figure-Ground Diagrams

Check out the journal article about OSMnx.

I previously demonstrated how to create figure-ground square-mile visualizations of urban street networks with OSMnx to consistently compare city patterns, design paradigms, and connectivity. OSMnx downloads, analyzes, and visualizes street networks from OpenStreetMap but it can also get building footprints. If we mash-up these building footprints with the street networks, we get a fascinating comparative window into urban form:

Figure-ground map of building footprints and street network in New York, San Francisco, Monrovia, and Port au Prince from OpenStreetMap data, created in Python with OSMnx

Categories
Planning

Square-Mile Street Network Visualization

Check out the journal article about OSMnx. All figures in this article come from this journal article, which you can read/cite for more.

The heart of Allan Jacobs’ classic book on street-level urban form and design, Great Streets, features dozens of hand-drawn figure-ground diagrams in the style of Nolli maps. Each depicts one square mile of a city’s street network. Drawing these cities at the same scale provides a revealing spatial objectivity in visually comparing their street networks and urban forms.

We can recreate these visualizations automatically with Python and the OSMnx package, which I developed as part of my dissertation. With OSMnx we can download a street network from OpenStreetMap for anywhere in the world in just one line of code. Here are the square-mile diagrams of Portland, San Francisco, Irvine, and Rome created and plotted automatically by OSMnx:

OSMnx: Figure-ground diagrams of one square mile of Portland, San Francisco, Irvine, and Rome shows the street network, urban form, and urban design in these cities

Categories
Planning

OSMnx: Python for Street Networks

OSMnx: New York City urban street network visualized and analyzed with Python and OpenStreetMap dataIf you use OSMnx in your work, please cite the journal article.

OSMnx is a Python package to retrieve, model, analyze, and visualize street networks from OpenStreetMap. Users can download and model walkable, drivable, or bikeable urban networks with a single line of Python code, and then easily analyze and visualize them. You can just as easily download and work with amenities/points of interest, building footprints, elevation data, street bearings/orientations, and network routing. If you use OSMnx in your work, please download/cite the paper here.

In a single line of code, OSMnx lets you download, model, and visualize the street network for, say, Modena Italy:

import osmnx as ox
ox.plot_graph(ox.graph_from_place('Modena, Italy'))

OSMnx: Modena Italy networkx street network in Python from OpenStreetMap

Categories
Data

R-tree Spatial Indexing with Python

r-tree spatial index with python geopandas: Thumbnail of Walnut Creek, California city boundary and street intersections inside and outside city limits Check out the journal article about OSMnx, which implements this technique.

A spatial index such as R-tree can drastically speed up GIS operations like intersections and joins. Spatial indices are key features of spatial databases like PostGIS, but they’re also available for DIY coding in Python. I’ll introduce how R-trees work and how to use them in Python and its geopandas library. All of my code is in this notebook in this urban data science GitHub repo.

Categories
Data

Visualize Foursquare Location History

I started using Foursquare at the end of 2012 and kept with it even after it became the pointless muck that is Swarm. Since I’ve now got 4 years of location history (ie, check-ins) data, I decided to visualize and map it with Python, matplotlib, and basemap. The code is available in this GitHub repo. It’s easy to re-purpose to visualize your own check-in history: you just need to plug in your Foursquare OAuth token then run the notebook.

First the notebook downloads all my check-ins from the Foursquare API. Then I mapped all of them, using matplotlib basemap.

Map of Foursquare Swarm check-in location history