
Modeling and Analyzing Urban Networks and
Amenities with OSMnx

Geoff Boeing

University of Southern California

May 2024

Abstract

OSMnx is a Python package for downloading, modeling, analyzing, and vi-
sualizing urban networks and any other geospatial features from OpenStreetMap
data. A large and growing body of literature uses it to conduct scientific stud-
ies across the disciplines of geography, urban planning, transport engineering,
computer science, and others. The OSMnx project has recently developed and
implemented many new features, modeling capabilities, and analytical methods.
The package now encompasses substantially more functionality than was pre-
viously documented in the literature. Accordingly, this paper introduces the
OSMnx package’s new capabilities, usage, and design—in addition to the sci-
entific theory and logic underlying them. Finally, it reflects on tool building in
geographical information science and the implications for urban modeling and
analysis in the mode of open science.1

1. Introduction

Modeling networked urban infrastructure—such as streets, rails, canals, etc.—and
geospatial features—such as amenities, points of interest, etc.—underpins research
into travel behavior, accessibility, public health, sustainability, and spatial equity. This
research spans the disciplines of urban morphology (e.g., Gervasoni et al., 2017; Nilsson
and Gil, 2019; Coutrot et al., 2022), transportation planning (e.g., Merchán et al., 2020;
Liao et al., 2020; Natera Orozco et al., 2020), and network science (e.g., Feng and

1Citation info: Boeing, G. 2024. Modeling and Analyzing Urban Networks and Amenities with
OSMnx. Working paper. https://geoffboeing.com/publications/osmnx-paper/

1

https://geoffboeing.com/publications/osmnx-paper/


Porter, 2020; Yin et al., 2020; Young and Eccles, 2020). However, traditional limitations
of data availability, inconsistent digitization standards, and lack of well-documented,
reusable tools historically limited the reproducibility, generalizability, scalability, and
usefulness of empirical urban network modeling (Liu et al., 2022). In response to similar
challenges across many disciplines, the open science movement calls for reproducibility
and transparency—in particular through building, sharing, and utilizing open-source
analytical tools (Rey, 2009; Singleton et al., 2016; Rey, 2019; Kedron et al., 2021). Like
their peers across disciplines, urban researchers need good tools for good science.

This paper describes OSMnx, a Python package that allows users to easily down-
load, model, analyze, and visualize urban networks and geospatial features from Open-
StreetMap data. Users can download and model walking, driving, biking, or custom
networks with a single line of code and then analyze and visualize them. Users can easily
work with urban amenities and points of interest, building footprints, transit stops,
elevation data, street orientations, speed and travel time, and routing.

The OSMnx package was first released as a beta in 2016 and that inchoate version
was documented in a preliminary paper (Boeing, 2017). At the time, it was the first tool
enabling users to automatically download and model the street network geometry and
topology of any city in the world as a graph and then analyze and visualize it (Boeing,
2020b). It has since become a widespread tool for a broad range of urban modeling and
analysis in the intervening years (e.g., Coutrot et al., 2022; Nilsson and Gil, 2019; Feng
and Porter, 2020; Gervasoni et al., 2017; Liao et al., 2020; Natera Orozco et al., 2020;
Yin et al., 2020; Young and Eccles, 2020).

However, since its initial release, the package has evolved substantially by expand-
ing its functionality, improving performance, and stabilizing a user-friendly API. To
document these start-of-the-art capabilities and their scientific underpinnings in the
literature, this paper presents OSMnx’s current modular structure, functionality, and
uses for urban modeling and analysis. The following section introduces the theory,
data, and tools of street network modeling and analysis, including OSMnx’s place in
that landscape. Then it presents the OSMnx package’s functionality, organization, and
usage. Finally this paper concludes with a brief discussion of implications for urban
network analysis and tool building in geographical information science.

2. Street Network Models and Analysis

Numerous sources cover spatial network theory and analysis (e.g., Tinkler, 1979; Barnes
and Harary, 1983; Gastner and Newman, 2006; Barthelemy, 2011; Ducruet and Beau-
guitte, 2014; O’Sullivan, 2014; Marshall et al., 2018). This section focuses on street
networks and offers an overview of necessary concepts then briefly reviews the current
tool landscape.

2



2.1. Model Fundamentals

Real-world networks are commonly modeled as mathematical graphs (Trudeau, 1994).
A graph, G, is a data structure consisting of two sets: one set, N , contains nodes that
are linked to each other by the second set, E, containing node pairs called edges. Let
G = (N,E) and {u, v} ⊆ N and {u, v} ∈ E. We can say for graph G that: 1) edge
{u, v} links nodes u and v, 2) edge {u, v} is incident to u and to v, 3) u is adjacent to v
and vice versa, and 4) u and v are neighbors (Newman, 2010). An adjacency matrix can
fully represent a graph by defining these adjacent node pairs.

A node’s degree is how many edges are incident to that node. For example, a node
with degree 2 has two incident edges which are consequently adjacent to each other. An
edge can be undirected (linking two nodes bidirectionally), directed (linking one-way
from a source node to a target node), or a self-loop (linking one node back to itself). A
graph with directed edges is a directed graph, or digraph. A graph that allows multiple
edges to link a single pair of nodes is a multigraph and those multiple edges are called
parallel edges.

A path is a sequence of edges linking a sequence of nodes. The graph distance
between two nodes is the count of edges in the shortest such path between them. A
weighted graph’s distance is the sum of some edge impedance attribute (e.g., length
or time) along the shortest path minimizing that sum. A directed graph is strongly
connected if a path exists between each ordered pair of nodes, and it is weakly connected
if such a path exists only if its edges are undirected. A disconnected graph contains
multiple connected components—each a disjoint set of nodes forming its own connected
subgraph.

Spatial networks’ nodes and/or edges are embedded in space. Spatial graphs thus
model both topology and geometry (O’Sullivan, 2014). Topology refers to the structure
and configuration of the nodes and edges, whereas geometry encompasses positions,
lengths, angles, etc. A planar graph can be represented in a two-dimensional plane such
that its edges intersect only at nodes (Barthelemy and Flammini, 2008). Most street
networks are nonplanar due to the occasional presence of overpasses and underpasses,
but their spatial embedding and “approximate” planarity constrain their topological
characteristics relative to other kinds of complex networks (Boeing, 2020a). A primal
graph of a street network models its intersections and dead-ends as nodes and its street
segments as edges (Porta et al., 2006b). A line graph (sometimes called a dual graph)
inverts this topology to instead model streets as nodes and their intersections as edges
(Porta et al., 2006a), though this discards much of the network’s geometry (Ratti, 2004).

3



2.2. Street Network Analysis

Many common geometric measures of spatial networks are often applied to street
networks. In general, these should use undirected representations of the graph to avoid
double-counting bidirectional streets relative to one-ways. Intersection density (i.e.,
the count of nodes with degree >1, normalized by network area) is perhaps the most
common such measure of network “grain” in transport planning and urban design (e.g.,
Ewing and Cervero, 2010). The average street segment length (i.e., mean edge length)
offers a linear proxy of block size. Street density is the sum of edge lengths normalized by
network area. Circuity can take on different interpretations, including average circuity:
the sum of edge lengths divided by the sum of great-circle distances between adjacent
node pairs, representing the inverse of network edge straightness (Boeing, 2019).

Additionally, many topological measures in network science are often applied to
street networks (Barthelemy, 2011). The average node degree (i.e., mean number of edges
incident to the nodes) indicates graph connectedness1 and is perhaps the most common
topological measure in transport planning and urban design (e.g., Barrington-Leigh and
Millard-Ball, 2015, 2017a, 2020). Networks with high connectedness can be more robust
against perturbation as they offer alternate routing options if parts of the network fail
(Boeing and Ha, 2024). Various measures of centrality are also common (Crucitti et al.,
2006). For example, a node’s betweenness centrality measures the share of all graph
shortest paths that pass through the node (Barthelemy, 2004; Barthelemy et al., 2013).
The graph’s maximum betweenness centrality indicates the share of shortest paths that
rely on its most important node: high values suggest possible chokepoints that represent
single points of failure, such as a bridge connecting a city’s halves across a river (Boeing
and Ha, 2024).

In street network analysis, researchers use these geometric and topological measures
to characterize a network’s form. Such analyses often also employ path solving (Miller,
1999; Wang et al., 2020). For example, accessibility analyses solve shortest paths (e.g., by
length or travel time) from origin nodes (e.g., homes) to destination nodes representing
the locations of amenities (e.g., workplaces, schools, transit stops, parks, greengrocers,
hospitals, etc.) to measure access (Foti, 2014; Liu et al., 2022). Disaster analyses often
simulate emergency responses or evacuations along the network to understand the
flows following a disaster (Sasabe et al., 2020; Tamakloe et al., 2021). These kinds of
analyses can reveal differential outcomes for different communities or locations with
the city, offering guidance for practitioners’ interventions.

2.3. Street Network Tools and Data

Various tools exist to model and analyze spatial networks like street networks. For
example, ESRI’s ArcGIS software includes a Network Analyst extension and QGIS

4



offers plug-ins for network analysis. However, such GIS tools’ network capabilities
are usually fairly limited. Conversely, dedicated network analysis tools such as Gephi,
igraph, graph-tool, and NetworkX offer robust network analysis functionality but
limited geospatial capabilities. Other dedicated spatial network tools exist, often for
specific analytical purposes, including PySAL spaghetti for network inference (Gaboardi
et al., 2021; Rey et al., 2022), Pandana for accessibility analysis (Foti, 2014), momepy for
urban morphology (Fleischmann, 2019), and stplanr for transport planning (Lovelace
and Ellison, 2019).

Street network data come from various sources, including governmental sources
like the US Census Bureau’s TIGER/Line shapefiles which represent network geome-
try but lack sufficient topological information to build a properly nonplanar model.
Alternatively, OpenStreetMap offers a worldwide, public web mapping platform and
geospatial database that anyone contribute to, with some editorial oversight, and in-
cludes streets, highways, transit, buildings, footpaths, cycleways, points of interest,
and political boundaries (Jokar Arsanjani et al., 2015). Although its coverage varies,
it includes network geometry and topology and its data quality is generally high—
particularly so in urban areas, with notable exceptions in China and sub-Saharan Africa
(Barron et al., 2014; Barrington-Leigh and Millard-Ball, 2017b). OpenStreetMap’s data
model comprises three element types: nodes (points), ways (either open ways repre-
senting lines or closed ways representing polygons), and relations (i.e., between nodes
and/or ways). These elements can possess one or more tags: key-value pairs containing
attribute data. OpenStreetMap data are available to download from third-party services,
such as Geofabrik, and web APIs including Overpass and Nominatim.

The problem, however, was historically that building a street network model from
raw OpenStreetMap data was fairly difficult. The Overpass API can be cumbersome to
extract the right data to construct an appropriate graph model. Analysts usually had to
write extensive ad hoc code to process the raw data into a useful graph model and then
write more code to conduct analyses. Their decisions on how to handle ubiquitous street
network characteristics—such as directedness, planarity, self-loops, parallel edges, or
culs-de-sac—frequently went undocumented. With every research team writing its own
ad hoc code, innumerable small modeling decisions inevitably would go unreported in
the resulting peer-reviewed literature—but these small decisions add up to significantly
restrict interpretability and replicability.

OSMnx fits into this landscape by allowing users to build a spatial network model
anywhere in the world by automatically downloading raw data from OpenStreetMap
and building a NetworkX model with spatial information. This allows users to sidestep
the ad hoc coding and replace the many small modeling decisions with a well-documented
and transparent common tool. Accordingly, OSMnx has become a standard tool in
the literature for both retrieving OpenStreetMap data broadly and for modeling street

5



networks specifically (Boeing, 2020b). The following section provides a current2 intro-
duction to the package’s organization, capabilities, and usage.

3. The OSMnx Package

OSMnx (pronounced as the initialism: “oh-ess-em-en-ex”) is a free, open-source, and
fully type-hinted package written in pure Python. The package is structured as a
collection of modules that organize related functionality (Table 1). It is built on top of
and uses the data structures of NetworkX (Hagberg et al., 2008), a network analysis
Python package, and GeoPandas (Van den Bossche et al., 2024), a Python package for
working with geospatial dataframes. It interacts with three public web APIs to collect
data: the OpenStreetMap Nominatim API, the Overpass API, and the Google Maps
Elevation API (or equivalent with the same interface). This section presents OSMnx’s
organization and capabilities.

3.1. Geocoding and Querying

OSMnx geocodes place names and addresses with the Nominatim API. Users can
use the geocoder module to geocode place names or addresses to latitude-longitude
point coordinates. Or, they can retrieve place boundaries or any other OpenStreetMap
elements by name or ID. Using the features and graph modules, as described below,
users can download OpenStreetMap data from the Overpass API by latitude-longitude
point coordinates, address, bounding box, bounding polygon/multipolygon, or place
name (e.g., neighborhood, city, county, etc.).

3.2. Urban Amenities

Using OSMnx’s features module, users can search for and download any geospatial
features (e.g., building footprints, grocery stores, schools, public parks, transit stops,
etc.) from the OpenStreetMap Overpass API as a GeoPandas GeoDataFrame object.
This uses OpenStreetMap tags to search for matching elements.

3.3. Modeling Networks

OSMnx models spatial networks as primal, nonplanar, weighted, directed multigraphs
with possible self-loops—specifically, these are NetworkX MultiDiGraph data struc-
tures (Hagberg et al., 2008). Using OSMnx’s graph module, users can download any
spatial network data (such as streets, paths, rail, canals, power lines, etc.) from the
Overpass API and model them as a MultiDiGraph.

OSMnx models a one-way street as a single directed edge from node u to node v,
but a bidirectional street is modeled with two reciprocal directed edges (with identical

6



Table 1. The OSMnx public API’s modules and the functionality they expose.

Module Functionality

bearing Calculate graph edge compass bearings and orientation entropy.
convert Convert graph to/from different data types.
distance Calculate spatial distances and find nearest graph node/edge(s)

to point(s).
elevation Attach node elevations from raster files or a Google Maps com-

patible elevation API, and calculate edge grades.
features Download OSM geospatial features’ geometries and attributes,

such as points of interest, building footprints, transit stops, etc.
geocoder Geocode place names or addresses or retrieve OSM elements by

place name or ID, via the Nominatim API.
graph Download and create graphs from OSM data, using filters to

query the Overpass API for built-in network types or a custom
filter.

io Save/load graphs to/from GraphML, GeoPackage, or OSM
XML files.

plot Visualize street networks, routes, orientations, and geospatial
features.

projection Project spatial graph to a different coordinate reference system.
routing Calculate graph edge speeds, travel times, and weighted shortest

paths between nodes.
settings Configure global package settings.
simplification Simplify and consolidate spatial graph nodes and edges.
stats Calculate geometric and topological network measures.
truncate Truncate spatial graph by distance, bounding box, or polygon.
utils General utility functions.
utils_geo Miscellaneous geospatial utility functions.

7



geometries)—one from u to v and another from v to u—to represent both possi-
ble directions of flow. Because these graphs are nonplanar, they correctly model the
topology of interchanges, overpasses, and underpasses. That is, edge crossings in a
two-dimensional plane are not nodes in an OSMnx model unless they represent true
junctions in the three-dimensional real world.

The graph module uses filters to query the Overpass API: users can either specify
a built-in network type or provide their own custom filter written in OverpassQL.
Under the hood, OSMnx does several things to generate the best possible model. It
initially buffers the query area by 500 meters to create the initial graph before truncating
it to the user’s desired query area. This ensures accurate streets-per-node counts by
attenuating graph perimeter effects. As the graph may contain many small disconnected
components around the perimeter, by default it returns the largest weakly connected
component. OSMnx also automatically simplifies the graph topology as discussed
below.

3.4. Topology Simplification and Correction

The simplification module automatically processes the network’s topology from
the original raw OpenStreetMap data to ensure that individual nodes represent in-
dividual intersections or dead-ends and edges represent the street segments that link
them. This simplification is of two primary types: graph simplification and intersection
consolidation.

Graph simplification, put simply, merges adjacent edges for a better model. It cleans
up the graph’s topology so that nodes represent intersections or dead-ends and edges
represent street segments. This is important because in OpenStreetMap’s raw data,
ways comprise sets of straight-line segments between nodes: that is, nodes are vertices
for streets’ curving line geometries, not just intersections and dead-ends. By default,
OSMnx simplifies this topology by deleting non-intersection/dead-end nodes, merging
the edges between them into a new “simplified” edge, and retaining the complete true
edge geometry as an edge attribute. When multiple OpenStreetMap ways are thus
merged into a new graph edge, the ways’ attribute values can be aggregated into a single
value.

Intersection consolidation, put simply, merges nearby nodes for a better model. This
is important because many real-world street networks feature complex intersections
and traffic circles, resulting in a cluster of graph nodes where there is really just one true
intersection as we would consider it in transport planning or urban design. Similarly,
divided roads are often represented by separate centerline edges. The intersection of 2
divided roads thus creates 4 nodes where each edge intersects a perpendicular edge—but
these 4 nodes represent a single intersection in the real world. OSMnx can consolidate
such complex intersections into a single node and optionally rebuild the graph’s edge

8



topology accordingly. When multiple OpenStreetMap nodes are thus merged into a
new graph node, the nodes’ attribute values can be aggregated into a single value.

Graph simplification and intersection consolidation offer several benefits. They
produce a more accurate model that better represents the real world. This in turn
yields more accurate network measures, for example by not overcounting complex
intersections when calculating intersection density or by not underrepresenting street
segment lengths. Finally, many graph algorithms’ time complexity scales with node or
edge count. By generating a graph with (often drastically) fewer nodes and edges—yet
no loss of accuracy—many algorithms will complete much faster. This matters most
when analyzing large urban networks, where runtime becomes an issue.

3.5. Converting, Projecting, and Saving

OSMnx’s convert module can convert a NetworkX MultiDiGraph model to a Net-
workX MultiGraph if the user prefers an undirected representation of the network
for specific analytical purposes, as discussed in the background section. It can also
convert to a NetworkX DiGraph if the user prefers a directed graph without any par-
allel edges. OSMnx can also convert a MultiDiGraph to and from node and edge
GeoPandas GeoDataFrame objects. The resulting nodes GeoDataFrame is indexed
by OpenStreetMap node ID, and the resulting edges GeoDataFrame is multi-indexed
by endpoint node u, endpoint node v, and a key (to differentiate parallel edges), just as a
MultiDiGraph edge is identified by its u, v, key ordered triplet. This also allows users
to load arbitrary node and edge ShapeFiles or GeoPackage layers as GeoDataFrames
then convert them to a MultiDiGraph for network analysis.

As these models are all spatial graphs, they have coordinate reference system (CRS)
metadata. OSMnx’s default CRS is EPSG:4326, but users can project a graph to any
other CRS using the projection module. If a user is unsure which CRS to project
to, OSMnx can automatically determine an appropriate Universal Transverse Mercator
CRS for the operation, based on the graph nodes’ centroid.

Finally, using the io module, users can save a graph to disk as a GraphML file (to
load into other network analysis software, including OSMnx), a GeoPackage (to load
into other GIS software), or an OSM XML file (the standard OpenStreetMap data
interchange format).

3.6. Elevation

Topography is essential to understanding street network form, but street network
analyses too often ignore elevation as it can be difficult to acquire and attach to a graph
model (Boeing, 2022). OSMnx’s elevation module lets users automatically add
elevation attributes to a spatial graph’s nodes from either a local raster file or the Google

9



Maps Elevation API. Once all nodes have elevation attributes, users can automatically
calculate edge grades (i.e., rise-over-run inclines), analyze the steepness of certain streets,
or use elevation change in an impedance function for routing, as discussed below.

3.7. Map Matching and Routing

OSMnx offers basic map matching and routing functionality. The distance module
can match a list of coordinates to each’s nearest node or edge using a fast spatial index
and vectorized operation. This can be useful for converting an origin-destination matrix
of coordinates (such as geocoded addresses) into corresponding nearest nodes for route
solving.

The routing module can solve shortest paths for network routing—parallelized
with multiprocessing—using different weights (e.g., distance, travel time, elevation
change, etc.). OpenStreetMap has a “maxspeed” tag representing streets’ maximum
speed limits, but it tends to be sparse for most cities. To address this problem, the
routing module can impute missing edge maximum speeds based on observed values
across other edges of the same type in the graph. Such imputation can be imprecise, but
the user can override it by passing per-type local speed limits. Once all edges have maxi-
mum speed attributes, the module can also automatically calculate free-flow traversal
times for each edge.

3.8. Network Measures

The stats module can calculate a variety of geometric and topological measures of
the network (Boeing, 2022). These measures define streets as the edges in an undirected
representation of the graph to prevent double-counting the bidirectional edges of a
two-way street. Users can automatically calculate common measures from transport
planning, urban design, and network science, including intersection density, circu-
ity, average node degree, centrality, and many others. Users can also use NetworkX
directly to calculate dozens of additional topological network measures. Addition-
ally, OSMnx’s bearing module can calculate the streets’ compass bearings and the
network’s orientation entropy (Boeing, 2019).

3.9. Visualization

Users can visualize network characteristics, routes, network figure-ground diagrams
(Boeing, 2021), building footprints, and network orientation polar histograms (Boeing,
2019) using OSMnx’s plot module. Users can also easily explore networks, routes, or
urban amenities as interactive web maps.

10



3.10. Installation and Configuration

The OSMnx project’s source code3 is publicly hosted on GitHub. Users can install the
package from the PyPI package repository using pip or from the Anaconda package
repository using conda, as detailed in the package documentation4 and its installation
instructions. To get started, users can read the documentation’s Getting Started guide
then work through the OSMnx Examples Gallery5 for step-by-step tutorials, feature
demonstrations, and sample code.

Once installed and imported, users can configure OSMnx through its settings
module. Here they can adjust logging behavior, server response caching, server end-
points (including pointing to locally hosted instances), and much more. Users can also
configure OSMnx to retrieve historical snapshots of OpenStreetMap data as of a certain
date.

4. Discussion

The open science movement calls for accessible, reusable, and well-documented research
tools to support better science. The OSMnx project seeks to contribute to these goals
in urban science by offering such a tool for modeling and analyzing urban networks and
amenities anywhere in the world from OpenStreetMap data. It embodies the relevant
domain theory from urban planning, network science, and geographical information
science in an easy-to-use tool. In turn, researchers no longer have to reinvent the wheel
and make dozens of ad hoc modeling decisions for each analytics project.

Along these lines, the OSMnx project aims to improve reproducibility by allowing
users to automatically model networks with clearly defined spatial extents, thoroughly
documented modeling decisions, and theoretically-sophisticated results. For example,
its graph models are primal, nonplanar, directed, weighted, multigraphs with possible
self-loops to capture the diversity of network types and characteristics around the world.
Its graph creation methods attenuate perimeter effects, and its graph simplification and
consolidation methods generate models that flexibly match real-world expectations and
use.

This paper documented the package’s current organization, capabilities, and scien-
tific underpinnings. Better tools, led by academic domain experts, represent one of the
key paths forward toward better and more open science.

Acknowledgments

The author wishes to thank the developers and maintainers of the many other packages
on which OSMnx depends, as well as the contributors who have lent their time and

11



expertise in proposing features, solving bugs, and contributing code to the OSMnx
code base over the years.

Notes
1The separate term connectivity has a distinct definition in graph theory, but is less useful for spatial

network analysis because approximate planarity sharply constrains it: almost all street networks have
connectivity equal to 1.

2This working paper documents OSMnx version 2.0.0 prior to its official release.
3The OSMnx source code is hosted at https://github.com/gboeing/osmnx
4The OSMnx documentation is available at https://osmnx.readthedocs.io/en/latest/
5The OSMnx Examples Gallery is hosted at https://github.com/gboeing/osmnx-examples

References

Barnes, J. A. and Harary, F. (1983). Graph Theory in Network Analysis. Social Networks,
5(2):235–244.

Barrington-Leigh, C. and Millard-Ball, A. (2015). A century of sprawl in the United
States. Proceedings of the National Academy of Sciences, 112(27):8244–8249.

Barrington-Leigh, C. and Millard-Ball, A. (2017a). More connected urban roads reduce
US GHG emissions. Environmental Research Letters, 12(4):044008.

Barrington-Leigh, C. and Millard-Ball, A. (2017b). The world’s user-generated road
map is more than 80% complete. PLOS ONE, 12(8):e0180698.

Barrington-Leigh, C. and Millard-Ball, A. (2020). Global trends toward urban street-
network sprawl. Proceedings of the National Academy of Sciences, 117(4):1941–1950.

Barron, C., Neis, P., and Zipf, A. (2014). A Comprehensive Framework for Intrinsic
OpenStreetMap Quality Analysis. Transactions in GIS, 18(6):877–895.

Barthelemy, M. (2004). Betweenness centrality in large complex networks. The Euro-
pean Physical Journal B: Condensed Matter and Complex Systems, 38(2):163–168.

Barthelemy, M. (2011). Spatial Networks. Physics Reports, 499(1-3):1–101.
Barthelemy, M., Bordin, P., Berestycki, H., and Gribaudi, M. (2013). Self-organization

versus top-down planning in the evolution of a city. Scientific Reports, 3.
Barthelemy, M. and Flammini, A. (2008). Modeling Urban Street Patterns. Physical

Review Letters, 100(13).
Boeing, G. (2017). OSMnx: New Methods for Acquiring, Constructing, Analyzing,

and Visualizing Complex Street Networks. Computers, Environment and Urban
Systems, 65:126–139.

Boeing, G. (2019). Urban Spatial Order: Street Network Orientation, Configuration,
and Entropy. Applied Network Science, 4(1):67.

12

https://github.com/gboeing/osmnx
https://osmnx.readthedocs.io/en/latest/
https://github.com/gboeing/osmnx-examples


Boeing, G. (2020a). Planarity and Street Network Representation in Urban Form
Analysis. Environment and Planning B: Urban Analytics and City Science, 47(5):855–
869.

Boeing, G. (2020b). The Right Tools for the Job: The Case for Spatial Science Tool-
Building. Transactions in GIS, 24(5):1299–1314.

Boeing, G. (2021). Spatial Information and the Legibility of Urban Form: Big Data in
Urban Morphology. International Journal of Information Management, 56:102013.

Boeing, G. (2022). Street Network Models and Indicators for Every Urban Area in the
World. Geographical Analysis, 54(3):519–535.

Boeing, G. and Ha, J. (2024). Resilient by Design: Simulating Street Network Disrup-
tions across Every Urban Area in the World. Transportation Research Part A: Policy
and Practice, 182:104016.

Coutrot, A., Manley, E., Goodroe, S., Gahnstrom, C., Filomena, G., Yesiltepe, D.,
Dalton, R. C., Wiener, J. M., Hölscher, C., Hornberger, M., and Spiers, H. J. (2022).
Entropy of city street networks linked to future spatial navigation ability. Nature,
604(7904):104–110.

Crucitti, P., Latora, V., and Porta, S. (2006). Centrality measures in spatial networks of
urban streets. Physical Review E, 73(3):036125.

Ducruet, C. and Beauguitte, L. (2014). Spatial Science and Network Science: Review
and Outcomes of a Complex Relationship. Networks and Spatial Economics, 14(3-
4):297–316.

Ewing, R. and Cervero, R. (2010). Travel and the Built Environment: A Meta-Analysis.
Journal of the American Planning Association, 76(3):265–294.

Feng, M. and Porter, M. A. (2020). Spatial applications of topological data analysis:
Cities, snowflakes, random structures, and spiders spinning under the influence.
Physical Review Research, 2(3):033426.

Fleischmann, M. (2019). momepy: Urban Morphology Measuring Toolkit. Journal of
Open Source Software, 4(43):1807.

Foti, F. (2014). Behavioral Framework for Measuring Walkability and its Impact on
Home Values and Residential Location Choices. Dissertation, University of California,
Berkeley, CA.

Gaboardi, J., Rey, S., and Lumnitz, S. (2021). spaghetti: spatial network analysis in
PySAL. Journal of Open Source Software, 6(62):2826.

Gastner, M. T. and Newman, M. E. J. (2006). The spatial structure of networks. The
European Physical Journal B: Condensed Matter and Complex Systems, 49(2):247–
252.

Gervasoni, L., Bosch, M., Fenet, S., and Sturm, P. (2017). Calculating spatial urban
sprawl indices using open data. In 15th International Conference on Computers in
Urban Planning and Urban Management, Adelaide, Australia.

13



Hagberg, A. A., Schult, D. A., and Swart, P. J. (2008). Exploring Network Structure,
Dynamics, and Function using NetworkX. In Varoquaux, G., Vaught, T., and
Millman, J., editors, Proceedings of the 7th Python in Science Conference, pages 11–15.
SciPy 2008, Pasadena, CA.

Jokar Arsanjani, J., Zipf, A., Mooney, P., and Helbich, M., editors (2015). Open-
StreetMap in GIScience. Springer International, Cham, Switzerland.

Kedron, P., Li, W., Fotheringham, S., and Goodchild, M. (2021). Reproducibility and
replicability: opportunities and challenges for geospatial research. International
Journal of Geographical Information Science, 35(3):427–445.

Liao, Y., Gil, J., Pereira, R. H. M., Yeh, S., and Verendel, V. (2020). Disparities in travel
times between car and transit: Spatiotemporal patterns in cities. Scientific Reports,
10(1):4056.

Liu, S., Higgs, C., Arundel, J., Boeing, G., Cerdera, N., Moctezuma, D., Cerin, E.,
Adlakha, D., Lowe, M., and Giles-Corti, B. (2022). A Generalized Framework for
Measuring Pedestrian Accessibility around the World Using Open Data. Geographical
Analysis, 54(3):559–582.

Lovelace, R. and Ellison, R. (2019). stplanr: A Package for Transport Planning. The R
Journal, 10(2):7.

Marshall, S., Gil, J., Kropf, K., Tomko, M., and Figueiredo, L. (2018). Street Network
Studies: from Networks to Models and their Representations. Networks and Spatial
Economics, 18:735–749.

Merchán, D., Winkenbach, M., and Snoeck, A. (2020). Quantifying the impact of
urban road networks on the efficiency of local trips. Transportation Research Part A:
Policy and Practice, 135:38–62.

Miller, H. J. (1999). Measuring space-time accessibility benefits within transportation
networks: basic theory and computational procedures. Geographical analysis, 31(1):1–
26.

Natera Orozco, L. G., Battiston, F., Iñiguez, G., and Szell, M. (2020). Data-driven strate-
gies for optimal bicycle network growth. Royal Society Open Science, 7(12):201130.

Newman, M. E. J. (2010). Networks: An Introduction. Oxford University Press, Oxford,
England.

Nilsson, L. and Gil, J. (2019). The Signature of Organic Urban Growth: Degree
Distribution Patterns of the City’s Street Network Structure. In D’Acci, L., editor,
The Mathematics of Urban Morphology, pages 93–121. Springer, Cham, Switzerland.

O’Sullivan, D. (2014). Spatial Network Analysis. In Fischer, M. M. and Nijkamp,
P., editors, Handbook of Regional Science, pages 1253–1273. Springer-Verlag, Berlin,
Germany.

Porta, S., Crucitti, P., and Latora, V. (2006a). The Network Analysis of Urban Streets:
A Dual Approach. Physica A: Statistical Mechanics and its Applications, 369(2):853–
866.

14



Porta, S., Crucitti, P., and Latora, V. (2006b). The network analysis of urban streets: a
primal approach. Environment and Planning B: Planning and Design, 33(5):705–725.

Ratti, C. (2004). Space syntax: some inconsistencies. Environment and Planning B:
Planning and Design, 31(4):487–499.

Rey, S. J. (2009). Show Me the Code: Spatial Analysis and Open Source. Journal of
Geographical Systems, 11(2):191–207.

Rey, S. J. (2019). PySAL: The First 10 Years. Spatial Economic Analysis, 14(3):273–282.
Rey, S. J., Anselin, L., Amaral, P., Arribas-Bel, D., Cortes, R. X., Gaboardi, J. D., Kang,

W., Knaap, E., Li, Z., Lumnitz, S., Oshan, T. M., Shao, H., and Wolf, L. J. (2022).
The PySAL Ecosystem: Philosophy and Implementation. Geographical Analysis,
54(3):467–487.

Sasabe, M., Fujii, K., and Kasahara, S. (2020). Road network risk analysis considering
people flow under ordinary and evacuation situations. Environment and Planning
B: Urban Analytics and City Science, 47(5):759–774.

Singleton, A. D., Spielman, S., and Brunsdon, C. (2016). Establishing a framework
for Open Geographic Information science. International Journal of Geographical
Information Science, 30(8):1507–1521.

Tamakloe, R., Hong, J., Tak, J., and Park, D. (2021). Finding evacuation routes using
traffic and network structure information. Transportation Research Part D: Transport
and Environment, 95:102853.

Tinkler, K. J. (1979). Graph theory. Progress in Geography, 3(1):85–116.
Trudeau, R. J. (1994). Introduction to Graph Theory. Dover Publications, New York,

NY, 2nd edition.
Van den Bossche, J., Jordahl, K., Fleischmann, M., Richards, M., McBride, J., Wasser-

man, J., Badaracco, A. G., Snow, A. D., Ward, B., Tratner, J., Gerard, J., Perry, M.,
Farmer, C., Hjelle, G. A., Taves, M., Hoeven, E. t., Cochran, M., Bell, R., rray-
mondgh, Bartos, M., Roggemans, P., Culbertson, L., Caria, G., Eubank, N., sangar-
shanan, Flavin, J., Rey, S., Gardiner, J., and Kaushik (2024). geopandas/geopandas:
v0.14.4.

Wang, M., Chen, Z., Mu, L., and Zhang, X. (2020). Road network structure and
ride-sharing accessibility: A network science perspective. Computers, Environment
and Urban Systems, 80:101430.

Yin, Y., Varadarajan, J., Wang, G., Wang, X., Sahrawat, D., Zimmermann, R., and Ng,
S.-K. (2020). A Multi-task Learning Framework for Road Attribute Updating via
Joint Analysis of Map Data and GPS Traces. In Proceedings of The Web Conference
2020, WWW ’20, pages 2662–2668, Taipei, Taiwan. Association for Computing
Machinery.

Young, D. L. and Eccles, C. (2020). Automatic construction of Markov decision
process models for multi-agent reinforcement learning. In Artificial Intelligence and

15



Machine Learning for Multi-Domain Operations Applications II, volume 11413, page
114130Y. International Society for Optics and Photonics.

16


	Introduction
	Street Network Models and Analysis
	Model Fundamentals
	Street Network Analysis
	Street Network Tools and Data

	The OSMnx Package
	Geocoding and Querying
	Urban Amenities
	Modeling Networks
	Topology Simplification and Correction
	Converting, Projecting, and Saving
	Elevation
	Map Matching and Routing
	Network Measures
	Visualization
	Installation and Configuration

	Discussion

